

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### trans-Carbonylchloridobis[diphenyl(4vinylphenyl)phosphane-*kP*]rhodium(I)

#### Hezron Ogutu, Leo Kirsten and Reinout Meijboom\*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: rmeijboom@uj.ac.za

Received 22 March 2012; accepted 29 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 12.7.

In the title compound, *trans*-[RhCl( $C_{20}H_{17}P$ )<sub>2</sub>(CO)], the Rh<sup>I</sup> atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chloride [Rh-Cl = 2.383 (2) Å]and carbonyl [Rh-C = 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh-P = 2.3251 (4) Å] from two diphenyl(4-vinylphenyl)phosphane ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The crystal packing exhibits weak C-H···Cl and C-H···O hydrogen bonds and  $\pi$ - $\pi$  interactions between the phenyl rings of neighbouring molecules, with a centroid-centroid distance of 3.682 (2) Å.

#### **Related literature**

For a review of rhodium Vaska  $\{trans-[RhCl(CO)(PR_3)_2]\}$ compounds, see: Roodt et al. (2003). For related compounds, see: Angoletta (1959); Vaska & Di Luzio (1961); Chen et al. (1991); Kuwabara & Bau (1994); Otto et al. (2000); Otto (2001); Meijboom et al. (2005).



#### **Experimental**

Crystal data [RhCl(C<sub>20</sub>H<sub>17</sub>P)<sub>2</sub>(CO)]  $M_r = 742.98$ 

Triclinic,  $P\overline{1}$ a = 9.9030 (4) Å b = 9.9310 (4) Å Z = 1c = 10.4150 (4) Å Cu  $K\alpha$  radiation  $\alpha = 85.727 \ (2)^{\circ}$  $\mu = 6.01 \text{ mm}^{-1}$ T = 100 K $\beta = 68.475(2)$  $\gamma = 62.295 \ (2)^{\circ}$  $0.10 \times 0.08 \times 0.06 \; \mathrm{mm}$ V = 837.85 (6) Å<sup>3</sup>

#### Data collection

| Bruker APEXII CCD                      | 11163 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2941 independent reflections           |
| Absorption correction: multi-scan      | 2850 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2007)                 | $R_{\rm int} = 0.026$                  |
| $T_{\min} = 0.107, \ T_{\max} = 0.402$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.024$ | 6 restraints                                               |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.057$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2941 reflections                | $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 232 parameters                  |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | $D-\mathrm{H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------------|--------------|--------------|--------------------------------------|
| $C9B - H9B1 \cdots O01^{i}$ | 0.93           | 2.54         | 3.205 (11)   | 129                                  |
| C14-H14···Cl1 <sup>ii</sup> | 0.93           | 2.79         | 3.660 (3)    | 157                                  |

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5270).

#### References

Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359-2361.

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441-2442.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.

Meijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283-m1285. Otto, S. (2001). Acta Cryst. C57, 793-795.

Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.

Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.

# supplementary materials

Acta Cryst. (2012). E68, m545 [doi:10.1107/S1600536812013669]

## trans-Carbonylchloridobis[diphenyl(4-vinylphenyl)phosphane-κP]rhodium(I)

### Hezron Ogutu, Leo Kirsten and Reinout Meijboom

#### Comment

The original Vaska complex, trans-[IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub>], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961). This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic inversion centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001;Otto et al., 2000; Chen et al.,1991; Kuwabara & Bau, 1994). These Vaska type complexes are useful model complexes and provide several probing methods, e.g. NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt et al., 2003).

Here we report the title compound, the i>trans-[RhClL<sub>2</sub>(CO)](L = diphenyl(4-vinylphenyl)phosphane) complex crystallizes in the triclinic space group, P-1.The crystal structure of the title compound (Fig.1) shows the expected square planar geometry with the phosphane ligands trans to each other. The Rh<sup>I</sup> atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chlorido [Rh—Cl 2.383 (2) Å] and carbonyl [Rh—C 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh—P 2.3251 (4) Å] from two L ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The J coupling of (Rh-P) is 128 Hz which is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005). The C01–Rh1–P2 angle of 92.99 (17) ° and the P2–Rh1–Cl1 of 94.46 (3) ° exemplifies the deviation from the ideal 90 ° square planar geometry.

The crystal packing exhibits weak intermolecular C—H···Cl and C—H···O hydrogen bonds (Table 1). There is a  $\pi$ - $\pi$  interaction between the neighbouring phenyl ring centroids of C16-C21 and C16-C21 (2-x,1-y,1-z), respectively with the centroid-centroid distance of 3.682 (2) Å.

#### **Experimental**

Diphenylphosphinostyrene (0.15 g, 0.51 mmol) was dissolved in acetone (6 cm<sup>3</sup>). A solution of dichlorotetracarbonyldirhodium(I) (0.04 g, 0.13 mmol) in acetone was added to the phosphine solution. The mixture was stirred for 5 minutes, slow evaporation of the solvent afforded the title compound as a yellow crystalline solid. Spectroscopic analysis:<sup>31</sup>P {H} NMR (CDCl<sub>3</sub>, 161.99 MHz, p.p.m.): 46.42 [d, <sup>1</sup>J(Rh—P) = 179.81 Hz]; IR v(CO): 1957.96 cm<sup>-1</sup>; (CD<sub>2</sub>Cl<sub>2</sub>) v(CO): 1977.04 cm<sup>-1</sup>.

#### Refinement

The H atoms were placed in geometrically idealized positions (C—H bonds of 0.95–0.98 /%A) and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Computing details**

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *S* 

(Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).



#### Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) (1 - x, 1 - y, 1 - z)].

#### trans-Carbonylchloridobis[diphenyl(4-vinylphenyl)phosphane- κP]rhodium(I)

| Crystal data                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [RhCl(C <sub>20</sub> H <sub>17</sub> P) <sub>2</sub> (CO)]<br>$M_r = 742.98$<br>Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 9.9030 (4) Å<br>b = 9.9310 (4) Å<br>c = 10.4150 (4) Å<br>a = 85.727 (2)°<br>$\beta = 68.475$ (2)°<br>$\gamma = 62.295$ (2)° | Z = 1<br>F(000) = 380<br>$D_x = 1.473 \text{ Mg m}^{-3}$<br>Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$<br>Cell parameters from 8410 reflections<br>$\theta = 4.6-66.3^{\circ}$<br>$\mu = 6.01 \text{ mm}^{-1}$<br>T = 100  K<br>Rectangular, yellow<br>$0.10 \times 0.08 \times 0.06 \text{ mm}$ |
| $\gamma = 62.295 (2)^{\circ}$<br>$V = 837.85 (6) Å^{3}$<br><i>Data collection</i>                                                                                                                                                                              | $0.10 \times 0.08 \times 0.06 \text{ mm}$                                                                                                                                                                                                                                                            |
| Bruker APEXII CCD<br>diffractometer                                                                                                                                                                                                                            | 11163 measured reflections<br>2941 independent reflections                                                                                                                                                                                                                                           |
| Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2007)<br>$T_{\min} = 0.107, T_{\max} = 0.402$                                             | 2850 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.026$<br>$\theta_{max} = 66.3^\circ, \ \theta_{min} = 4.6^\circ$<br>$h = -11 \rightarrow 7$<br>$k = -11 \rightarrow 11$<br>$l = -12 \rightarrow 12$                                                                                            |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                      |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.024$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.057$                               | neighbouring sites                                        |
| S = 1.04                                        | H-atom parameters constrained                             |
| 2941 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0256P)^2 + 0.5512P]$         |
| 232 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 6 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$      |
|                                                 |                                                           |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------------|-----------------------------|-----------|
| Rh1 | 0.5          | 0.5         | 0.5          | 0.02293 (9)                 |           |
| C11 | 0.34866 (19) | 0.7717 (2)  | 0.55041 (12) | 0.0329 (3)                  | 0.5       |
| C01 | 0.6149 (7)   | 0.2999 (8)  | 0.4747 (5)   | 0.0330 (14)*                | 0.5       |
| O01 | 0.6932 (5)   | 0.1680 (6)  | 0.4511 (4)   | 0.0393 (13)*                | 0.5       |
| P2  | 0.71286 (5)  | 0.50159 (5) | 0.30681 (4)  | 0.02055 (12)                |           |
| C2  | 0.7589 (2)   | 0.3785 (2)  | 0.15917 (19) | 0.0239 (4)                  |           |
| C3  | 0.9177 (3)   | 0.2746 (2)  | 0.0745 (2)   | 0.0305 (4)                  |           |
| Н3  | 1.0063       | 0.2629      | 0.0949       | 0.037*                      |           |
| C4  | 0.9461 (3)   | 0.1880 (3)  | -0.0400 (2)  | 0.0412 (5)                  |           |
| H4  | 1.0536       | 0.1179      | -0.0942      | 0.049*                      |           |
| C5  | 0.8188 (4)   | 0.2033 (3)  | -0.0755 (2)  | 0.0431 (6)                  |           |
| C6  | 0.6589 (3)   | 0.3064 (3)  | 0.0108 (3)   | 0.0421 (6)                  |           |
| H6  | 0.5708       | 0.3183      | -0.0103      | 0.05*                       |           |
| C7  | 0.6284 (3)   | 0.3916 (2)  | 0.1273 (2)   | 0.0331 (4)                  |           |
| H7  | 0.5206       | 0.4578      | 0.1843       | 0.04*                       |           |
| C10 | 0.6760 (2)   | 0.6851 (2)  | 0.23862 (19) | 0.0224 (4)                  |           |
| C11 | 0.6826 (2)   | 0.7072 (2)  | 0.1032 (2)   | 0.0253 (4)                  |           |
| H11 | 0.7081       | 0.6263      | 0.0436       | 0.03*                       |           |
| C12 | 0.6512 (3)   | 0.8499 (2)  | 0.0569 (2)   | 0.0327 (4)                  |           |
| H12 | 0.6555       | 0.8642      | -0.0335      | 0.039*                      |           |
| C13 | 0.6137 (3)   | 0.9700 (2)  | 0.1445 (3)   | 0.0379 (5)                  |           |
| H13 | 0.591        | 1.0657      | 0.1137       | 0.045*                      |           |
| C14 | 0.6097 (3)   | 0.9485 (2)  | 0.2788 (2)   | 0.0346 (5)                  |           |
| H14 | 0.5864       | 1.0292      | 0.3374       | 0.042*                      |           |
| C15 | 0.6406 (2)   | 0.8070 (2)  | 0.3253 (2)   | 0.0277 (4)                  |           |
| H15 | 0.6377       | 0.793       | 0.4153       | 0.033*                      |           |

| C16  | 0.9104 (2)  | 0.4379 (2)  | 0.32389 (18) | 0.0226 (4)  |            |
|------|-------------|-------------|--------------|-------------|------------|
| C17  | 0.9552 (3)  | 0.3347 (2)  | 0.4169 (2)   | 0.0297 (4)  |            |
| H17  | 0.8835      | 0.299       | 0.4721       | 0.036*      |            |
| C18  | 1.1066 (3)  | 0.2846 (2)  | 0.4277 (2)   | 0.0335 (4)  |            |
| H18  | 1.1369      | 0.2139      | 0.4888       | 0.04*       |            |
| C19  | 1.2126 (2)  | 0.3398 (2)  | 0.3477 (2)   | 0.0316 (4)  |            |
| H19  | 1.3137      | 0.3065      | 0.3553       | 0.038*      |            |
| C20  | 1.1679 (2)  | 0.4442 (3)  | 0.2569 (2)   | 0.0314 (4)  |            |
| H20  | 1.2384      | 0.4822      | 0.2042       | 0.038*      |            |
| C21  | 1.0179 (2)  | 0.4927 (2)  | 0.2438 (2)   | 0.0274 (4)  |            |
| H21  | 0.9891      | 0.562       | 0.1814       | 0.033*      |            |
| C8A  | 0.8768 (8)  | 0.0979 (6)  | -0.2041 (5)  | 0.0314 (11) | 0.668 (10) |
| H8A  | 0.9865      | 0.0231      | -0.2409      | 0.038*      | 0.668 (10) |
| C9A  | 0.7794 (5)  | 0.1079 (5)  | -0.2647 (4)  | 0.0441 (14) | 0.668 (10) |
| H9A1 | 0.6693      | 0.1819      | -0.2295      | 0.053*      | 0.668 (10) |
| H9A2 | 0.8198      | 0.041       | -0.3433      | 0.053*      | 0.668 (10) |
| C9B  | 0.9234 (11) | 0.0621 (10) | -0.2909 (12) | 0.043 (3)   | 0.332 (10) |
| H9B1 | 1.0259      | 0.0295      | -0.2862      | 0.051*      | 0.332 (10) |
| H9B2 | 0.916       | 0.0272      | -0.3672      | 0.051*      | 0.332 (10) |
| C8B  | 0.7895 (13) | 0.1573 (11) | -0.1898 (8)  | 0.028 (2)   | 0.332 (10) |
| H8B  | 0.6847      | 0.1928      | -0.1903      | 0.034*      | 0.332 (10) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|---------------|--------------|
| Rh1 | 0.01987 (12) | 0.02210 (12) | 0.02175 (12) | -0.01035 (8)  | -0.00276 (8)  | 0.00663 (7)  |
| C11 | 0.0272 (6)   | 0.0269 (8)   | 0.0345 (6)   | -0.0141 (6)   | 0.0001 (4)    | 0.0063 (6)   |
| P2  | 0.0190 (2)   | 0.0228 (2)   | 0.0180 (2)   | -0.01070 (18) | -0.00469 (17) | 0.00582 (17) |
| C2  | 0.0292 (9)   | 0.0246 (9)   | 0.0233 (9)   | -0.0173 (8)   | -0.0107 (8)   | 0.0098 (7)   |
| C3  | 0.0334 (10)  | 0.0332 (11)  | 0.0265 (10)  | -0.0203 (9)   | -0.0065 (8)   | 0.0024 (8)   |
| C4  | 0.0518 (14)  | 0.0439 (13)  | 0.0288 (11)  | -0.0326 (11)  | -0.0013 (10)  | -0.0035 (9)  |
| C5  | 0.0767 (17)  | 0.0471 (13)  | 0.0270 (11)  | -0.0487 (13)  | -0.0171 (11)  | 0.0118 (10)  |
| C6  | 0.0690 (16)  | 0.0469 (13)  | 0.0488 (13)  | -0.0451 (13)  | -0.0427 (13)  | 0.0280 (11)  |
| C7  | 0.0363 (11)  | 0.0316 (11)  | 0.0426 (12)  | -0.0208 (9)   | -0.0216 (9)   | 0.0135 (9)   |
| C10 | 0.0172 (8)   | 0.0230 (9)   | 0.0246 (9)   | -0.0103 (7)   | -0.0051 (7)   | 0.0061 (7)   |
| C11 | 0.0225 (9)   | 0.0273 (9)   | 0.0248 (9)   | -0.0127 (7)   | -0.0069 (7)   | 0.0052 (7)   |
| C12 | 0.0315 (10)  | 0.0335 (11)  | 0.0308 (10)  | -0.0154 (9)   | -0.0114 (8)   | 0.0146 (8)   |
| C13 | 0.0359 (11)  | 0.0251 (10)  | 0.0481 (13)  | -0.0151 (9)   | -0.0119 (10)  | 0.0133 (9)   |
| C14 | 0.0317 (10)  | 0.0264 (10)  | 0.0405 (12)  | -0.0146 (8)   | -0.0061 (9)   | -0.0009 (8)  |
| C15 | 0.0247 (9)   | 0.0302 (10)  | 0.0249 (9)   | -0.0135 (8)   | -0.0050 (7)   | 0.0028 (8)   |
| C16 | 0.0229 (9)   | 0.0241 (9)   | 0.0182 (8)   | -0.0094 (7)   | -0.0067 (7)   | -0.0001 (7)  |
| C17 | 0.0337 (10)  | 0.0297 (10)  | 0.0298 (10)  | -0.0168 (8)   | -0.0144 (8)   | 0.0077 (8)   |
| C18 | 0.0373 (11)  | 0.0304 (10)  | 0.0371 (11)  | -0.0133 (9)   | -0.0230 (9)   | 0.0086 (9)   |
| C19 | 0.0273 (10)  | 0.0353 (11)  | 0.0315 (10)  | -0.0109 (8)   | -0.0142 (8)   | -0.0023 (8)  |
| C20 | 0.0274 (10)  | 0.0418 (12)  | 0.0266 (10)  | -0.0184 (9)   | -0.0088 (8)   | 0.0028 (8)   |
| C21 | 0.0271 (9)   | 0.0344 (10)  | 0.0213 (9)   | -0.0149 (8)   | -0.0096 (8)   | 0.0056 (8)   |
| C8A | 0.032 (2)    | 0.030 (2)    | 0.029 (3)    | -0.0122 (19)  | -0.010 (2)    | 0.0010 (17)  |
| C9A | 0.044 (2)    | 0.045 (2)    | 0.038 (2)    | -0.0152 (17)  | -0.0148 (16)  | -0.0073 (17) |
| C9B | 0.046 (6)    | 0.048 (5)    | 0.033 (6)    | -0.018 (4)    | -0.016 (4)    | -0.004 (4)   |
|     |              |              |              |               |               |              |

|                    |                        |           |           |             |            | ,           |
|--------------------|------------------------|-----------|-----------|-------------|------------|-------------|
| C8B                | 0.023 (4)              | 0.029 (4) | 0.031 (4) | -0.010 (4)  | -0.011 (3) | -0.002 (3)  |
| Geom               | etric parameters (     | (Å, °)    |           |             |            |             |
| Rh1—               | -C01 <sup>i</sup>      | 1.752 (7  | )         | C12—C13     |            | 1.377 (3)   |
| Rh1—               | -C01                   | 1.752 (7  | )         | C12—H12     |            | 0.93        |
| Rh1—               | -P2                    | 2.3251 (  | 4)        | C13—C14     |            | 1.388 (3)   |
| Rh1—               | -P2 <sup>i</sup>       | 2.3251 (  | 4)        | C13—H13     |            | 0.93        |
| Rh1—               | -Cl1 <sup>i</sup>      | 2.383 (2  | )         | C14—C15     |            | 1.383 (3)   |
| Rh1—               | -Cl1                   | 2.383 (2  | )         | C14—H14     |            | 0.93        |
| C01-               | -O01                   | 1.158 (7  | )         | C15—H15     |            | 0.93        |
| P2—0               | 22                     | 1.8205 (  | 19)       | C16—C17     |            | 1.389 (3)   |
| P2—0               | C10                    | 1.8266 (  | 18)       | C16—C21     |            | 1.395 (3)   |
| P2—0               | C16                    | 1.8298 (  | 18)       | C17—C18     |            | 1.389 (3)   |
| C2—0               | C3                     | 1.388 (3  | )         | C17—H17     |            | 0.93        |
| C2—0               | C <b>7</b>             | 1.396 (3  | )         | C18—C19     |            | 1.387 (3)   |
| С3—(               | C4                     | 1.387 (3  | )         | C18—H18     |            | 0.93        |
| С3—І               | H3                     | 0.93      | ,         | C19—C20     |            | 1.377 (3)   |
| C4—0               | C5                     | 1.380 (4  | )         | C19—H19     |            | 0.93        |
| C4—I               | H4                     | 0.93      | ,         | C20—C21     |            | 1.389 (3)   |
| С5—(               | 26                     | 1.396 (4  | )         | C20—H20     |            | 0.93        |
| С5—(               | C8B                    | 1.473 (8  | )         | C21—H21     |            | 0.93        |
| С5—(               | C8A                    | 1.518 (6  | )         | C8A—C9A     |            | 1.299 (8)   |
| C6—0               | C <b>7</b>             | 1.387 (3  | )         | C8A—H8A     |            | 0.93        |
| C6—I               | H6                     | 0.93      | /         | C9A—H9A1    |            | 0.93        |
| C7—I               | H7                     | 0.93      |           | С9А—Н9А2    |            | 0.93        |
| C10-               | -C15                   | 1.392 (3  | )         | C9B—C8B     |            | 1.311 (15)  |
| C10-               | -C11                   | 1.393 (3  | )         | C9B—H9B1    |            | 0.93        |
| C11-               | -C12                   | 1.392 (3  | )         | C9B—H9B2    |            | 0.93        |
| C11—               | -H11                   | 0.93      | ,<br>     | C8B—H8B     |            | 0.93        |
| C01 <sup>i</sup>   | -Rh1-C01               | 180.000   | 0 (10)    | C12—C11—C10 |            | 120.20 (19) |
| C01 <sup>i</sup> - | -Rh1-P2                | 92.99 (1  | 7)        | C12—C11—H11 |            | 119.9       |
| C01-               | -Rh1—P2                | 87.01 (1  | 7)        | C10-C11-H11 |            | 119.9       |
| C01 <sup>i</sup> - | –Rh1—P2 <sup>i</sup>   | 87.01 (1  | 7)        | C13—C12—C11 |            | 120.2 (2)   |
| C01-               | -Rh1—P2 <sup>i</sup>   | 92.99 (1  | 7)        | C13—C12—H12 |            | 119.9       |
| P2—F               | Rh1—P2 <sup>i</sup>    | 180.00 (  | 2)        | C11—C12—H12 |            | 119.9       |
| C01 <sup>i</sup> - | –Rh1––Cl1 <sup>i</sup> | 175.46 (  | 17)       | C12—C13—C14 |            | 120.06 (19) |
| C01-               | -Rh1—Cl1 <sup>i</sup>  | 4.54 (17  | )         | C12—C13—H13 |            | 120         |
| P2—F               | Rh1—Cl1 <sup>i</sup>   | 85.54 (3  | )         | C14—C13—H13 |            | 120         |
| P2 <sup>i</sup> —I | Rh1—Cl1 <sup>i</sup>   | 94.46 (3  | )         | C15—C14—C13 |            | 119.9 (2)   |
| C01 <sup>i</sup> - | -Rh1Cl1                | 4.54 (17  | )         | C15—C14—H14 |            | 120.1       |
| C01-               | -Rh1Cl1                | 175.46 (  | 17)       | C13—C14—H14 |            | 120.1       |
| P2—F               | Rh1—Cl1                | 94.46 (3  | )         | C14—C15—C10 |            | 120.72 (19) |
| P2 <sup>i</sup> —I | Rh1—Cl1                | 85.54 (3  | )         | C14—C15—H15 |            | 119.6       |
| Cl1 <sup>i</sup> — | -Rh1—Cl1               | 180.00 (  | 6)        | C10—C15—H15 |            | 119.6       |
| O01-               | -C01—Rh1               | 176.7 (5  | )         | C17—C16—C21 |            | 119.13 (17) |
| C2—I               | P2—C10                 | 103.30 (  | 8)        | C17—C16—P2  |            | 120.51 (15) |
| C2—I               | P2—C16                 | 105.19 (  | 8)        | C21—C16—P2  |            | 120.36 (14) |
| C10-               | -P2C16                 | 102.16 (  | 8)        | C16—C17—C18 |            | 120.31 (19) |

# supplementary materials

| C2—P2—Rh1                    | 110.70 (6)   | C16—C17—H17     | 119.8        |
|------------------------------|--------------|-----------------|--------------|
| C10—P2—Rh1                   | 116.84 (6)   | C18—C17—H17     | 119.8        |
| C16—P2—Rh1                   | 117.12 (6)   | C19—C18—C17     | 120.11 (19)  |
| C3—C2—C7                     | 118.24 (19)  | C19—C18—H18     | 119.9        |
| C3—C2—P2                     | 123.22 (15)  | C17—C18—H18     | 119.9        |
| C7—C2—P2                     | 118.52 (16)  | C20—C19—C18     | 119.90 (18)  |
| C4—C3—C2                     | 120.8 (2)    | С20—С19—Н19     | 120          |
| С4—С3—Н3                     | 119.6        | C18—C19—H19     | 120          |
| С2—С3—Н3                     | 119.6        | C19—C20—C21     | 120.27 (19)  |
| C5—C4—C3                     | 121.7 (2)    | C19—C20—H20     | 119.9        |
| C5—C4—H4                     | 119.2        | C21—C20—H20     | 119.9        |
| C3—C4—H4                     | 119.2        | C20—C21—C16     | 120.26 (18)  |
| C4—C5—C6                     | 117.4 (2)    | C20—C21—H21     | 119.9        |
| C4—C5—C8B                    | 140.7 (5)    | C16—C21—H21     | 119.9        |
| C6—C5—C8B                    | 101.4 (5)    | C9A—C8A—C5      | 122.6 (5)    |
| C4—C5—C8A                    | 113.1 (3)    | С9А—С8А—Н8А     | 118.7        |
| C6—C5—C8A                    | 129.4 (3)    | С5—С8А—Н8А      | 118.7        |
| C7—C6—C5                     | 121.6 (2)    | C8A—C9A—H9A1    | 120          |
| С7—С6—Н6                     | 119.2        | С8А—С9А—Н9А2    | 120          |
| С5—С6—Н6                     | 119.2        | H9A1—C9A—H9A2   | 120          |
| C6—C7—C2                     | 120.3 (2)    | C8B—C9B—H9B1    | 120          |
| С6—С7—Н7                     | 119.9        | C8B—C9B—H9B2    | 120          |
| С2—С7—Н7                     | 119.9        | H9B1—C9B—H9B2   | 120          |
| C15—C10—C11                  | 118.91 (17)  | C9B—C8B—C5      | 114.4 (8)    |
| C15—C10—P2                   | 118.66 (14)  | C9B—C8B—H8B     | 122.8        |
| C11—C10—P2                   | 122.43 (15)  | C5—C8B—H8B      | 122.8        |
|                              |              |                 |              |
| C01 <sup>i</sup> —Rh1—P2—C2  | -126.99 (17) | Rh1—P2—C10—C15  | 59.78 (15)   |
| C01—Rh1—P2—C2                | 53.01 (17)   | C2-P2-C10-C11   | 1.31 (17)    |
| Cl1 <sup>i</sup> —Rh1—P2—C2  | 48.71 (7)    | C16—P2—C10—C11  | 110.36 (15)  |
| Cl1—Rh1—P2—C2                | -131.29 (7)  | Rh1—P2—C10—C11  | -120.47 (14) |
| C01 <sup>i</sup> —Rh1—P2—C10 | -9.16 (17)   | C15-C10-C11-C12 | -1.2 (3)     |
| C01—Rh1—P2—C10               | 170.84 (17)  | P2-C10-C11-C12  | 179.06 (15)  |
| Cl1 <sup>i</sup> —Rh1—P2—C10 | 166.53 (7)   | C10-C11-C12-C13 | 0.1 (3)      |
| Cl1—Rh1—P2—C10               | -13.47 (7)   | C11—C12—C13—C14 | 1.0 (3)      |
| C01 <sup>i</sup> —Rh1—P2—C16 | 112.47 (17)  | C12—C13—C14—C15 | -1.1 (3)     |
| C01—Rh1—P2—C16               | -67.53 (17)  | C13—C14—C15—C10 | 0.1 (3)      |
| Cl1 <sup>i</sup> —Rh1—P2—C16 | -71.84 (7)   | C11—C10—C15—C14 | 1.1 (3)      |
| Cl1—Rh1—P2—C16               | 108.16 (7)   | P2-C10-C15-C14  | -179.15 (15) |
| C10—P2—C2—C3                 | 99.98 (17)   | C2—P2—C16—C17   | -96.18 (16)  |
| C16—P2—C2—C3                 | -6.79 (18)   | C10—P2—C16—C17  | 156.22 (16)  |
| Rh1—P2—C2—C3                 | -134.20 (15) | Rh1—P2—C16—C17  | 27.23 (17)   |
| C10—P2—C2—C7                 | -78.41 (16)  | C2—P2—C16—C21   | 83.97 (16)   |
| C16—P2—C2—C7                 | 174.82 (15)  | C10—P2—C16—C21  | -23.63 (17)  |
| Rh1—P2—C2—C7                 | 47.41 (16)   | Rh1—P2—C16—C21  | -152.63 (13) |
| C7—C2—C3—C4                  | 1.0 (3)      | C21—C16—C17—C18 | -1.3 (3)     |
| P2—C2—C3—C4                  | -177.38 (16) | P2-C16-C17-C18  | 178.86 (16)  |
| C2—C3—C4—C5                  | 1.1 (3)      | C16—C17—C18—C19 | 1.3 (3)      |
| $C^2$ $C^4$ $C^5$ $C^6$      | -19(3)       | C17—C18—C19—C20 | -0.3(3)      |

# supplementary materials

| $C^2$ $C^4$ $C^5$ $C^{9}$ D | 169 9 (5)    | C18 C10 C20 C21       | 0.0(2)       |
|-----------------------------|--------------|-----------------------|--------------|
| С3—С4—С3—С8В                | 108.8 (3)    | C10 - C19 - C20 - C21 | -0.9(3)      |
| C3—C4—C5—C8A                | -180.0 (2)   | C19—C20—C21—C16       | 0.9 (3)      |
| C4—C5—C6—C7                 | 0.6 (3)      | C17—C16—C21—C20       | 0.2 (3)      |
| C8B—C5—C6—C7                | -173.4 (3)   | P2-C16-C21-C20        | -179.99 (15) |
| C8A—C5—C6—C7                | 178.3 (3)    | C4—C5—C8A—C9A         | -171.1 (3)   |
| C5—C6—C7—C2                 | 1.5 (3)      | C6—C5—C8A—C9A         | 11.1 (5)     |
| C3—C2—C7—C6                 | -2.3 (3)     | C8B—C5—C8A—C9A        | -5.9 (6)     |
| P2—C2—C7—C6                 | 176.19 (15)  | C4—C5—C8B—C9B         | 6.1 (10)     |
| C2—P2—C10—C15               | -178.44 (14) | C6—C5—C8B—C9B         | 177.7 (6)    |
| C16—P2—C10—C15              | -69.39 (16)  | C8A—C5—C8B—C9B        | -15.6 (5)    |

Symmetry code: (i) -x+1, -y+1, -z+1.

### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>       | D—H  | H···A | D····A     | <i>D</i> —H··· <i>A</i> |
|-------------------------------|------|-------|------------|-------------------------|
| С9В—Н9В1…О01 <sup>ії</sup>    | 0.93 | 2.54  | 3.205 (11) | 129                     |
| C14—H14····Cl1 <sup>iii</sup> | 0.93 | 2.79  | 3.660 (3)  | 157                     |

Symmetry codes: (ii) -*x*+2, -*y*, -*z*; (iii) -*x*+1, -*y*+2, -*z*+1.